monary fibrosis, Respiratory Research, 19, pp. 153.

and Bergman, Y. (2012). Programming of DNA methylation patterns. Annual

view of Biochemistry, 81, pp. 97–117.

Uyar, H., Yasar, E., Gumus, O., Dikenelli, O. and Dumontier, M. (2019).

aluation of knowledge graph embedding approaches for drug-drug interaction

diction in realistic settings, BMC Bioinformatics, 20, pp. 726.

M. and Pazos, F. (2010). Quantifying the biological significance of gene

ology biological processes — implications for the analysis of systems-wide data,

informatics, 26, pp. 378–384.

A. and Neuvial, P. (2015). tmle.npvi: targeted, integrative search of associations

ween DNA copy number and gene expression, accounting for DNA methylation.

informatics, 31, pp. 3054–3056.

Chang, J. C., Wooten, E. C., Tsimelzon, A., Hilsenbeck, S. G., Gutierrez, M. C.,

edge, R., Mohsin, S., Osborne, C. K., Chamness, G. C., Allred, D. C. and

Connell, P. (2003). Gene expression profiling for the prediction of therapeutic

ponse to docetaxel in patients with breast cancer. Lancet. 362, pp. 362–369.

d Kim, H. J. (2019). Removal of computed tomography ring artifacts via radial

is function artificial neural networks, Physics in Medicine and Biology, 64, pp.

015.

Coe, B. P., Vucic, E. A., Lockwood, W. W. and Lam, W. L. (2010). An

grative multi-dimensional genetic and epigenetic strategy to identify aberrant

es and pathways in cancer. BMC Systems Biology, 4, pp. 67.

S. and Hadi, A. S. (2015). Regression Analysis by Example, (John Wiley &

ns, Inc, New Jersey).

, N., Ahmad, K., Yadav, B. S., Lee, E. J., Sonkar, S. C., Marina, N. and Choi, I.

20). Understanding calcium-dependent conformational changes in S100A1

tein: a combination of molecular dynamics and gene expression study in

letal muscle, Cell, 9, pp. e181.

, Jeong, H., Qian, X. and Yoon, B. J. (2019). TOPAS: network-based structural

gnment of RNA sequences, Bioinformatics, 35, pp. 2941–2948.

nd Boutros, P. C. (2011). VennDiagram: a package for the generation of highly-

tomizable Venn and Euler diagrams in R, BMC Bioinformatics, 12, pp. 35.

Cowan, C. F. N. and Grant, P. M. (1991). Orthogonal least squares learning

orithm for radial basis function networks, IEEE Transactions on Neural

works, 2, pp. 302–309.

Hedley, P. E., Morris, J., Liu, H., Niks, R. E. and Waugh, R. (2011). Combining

etical genomics and bulked segregant analysis-based differential expression: an

roach to gene localization, Theoretical and Applied Genetics, 122, pp. 1375–1383.

J. R. (1993). Proteases, Protease Inhibitors and Protease-Derived Peptides,

ringer).

, Kim, S. B., Jeong, M. K., Park, Y., Miller, N. G., Ziegler, T. R. and Jones, D.

2008). Discovery of metabolite features for the modelling and analysis of high-